当前位置:首页 > 派等于什么数

派等于什么数

数学派等于多少

π是一个无理数,所以不能直接表示出来。

圆周率(π):3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211.........(约等于3.141592654),通常用3.14来表示π的数值。

一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。

扩展资料:

以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积的比例定为,即圆形之面积与半径平方之比。定义圆周率不一定要用到几何概念,比如,我们可以定义为满足的最小正实数

这里的正弦函数定义为幂级数

π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。1882年,林德曼更证明了π是超越数,即π不可能是任何整系数多项式的根。

圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。

π是什么数

π是无限不循环小数。

圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。

它是一个无理数,即无限不循环小数。

扩展资料:

计算π的历史沿革:

公元前800至600年成文的古印度宗教巨著《百道梵书》(SatapathaBrahmana)显示了圆周率等于分数339/108,约等于3.139。

古希腊大数学家阿基米德(公元前287–212年)开创了人类历史上通过理论计算圆周率近似值的先河,他求出圆周率的下界和上界分别为223/71和22/7,并取它们的平均值3.141851为圆周率的近似值。

公元263年,中国数学家刘徽用“割圆术”计算圆周率,求出3072边形的面积,得到令自己满意的圆周率3.1416。

公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果。

参考资料:百度百科-π

问一下派属于是什么呢?

派属于实数。因为实数包括有理数和无理数,而“派”就是无理数,因此其属于实数。

π是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。

派介绍:

圆周率用希腊字母π(读作[pa?])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

以上内容参考:百度百科-圆周率

π等于什么

π,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。

“派”是什么数?

圆周率(派)我国中国古代数学家祖冲之是世界上把圆周率算到最精确的人,是在3.1415926……至3.1415927……之间,周长与直径的比值叫做圆周率,用希腊字母π(派)表示。

π的值是多少

π约等于3.141592654。

圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。

它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。

即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

扩展资料:

π趣闻事件:

历史上最马拉松式的人手π值计算,其一是德国的鲁道夫·范·科伊伦(LudolphvanCeulen),他几乎耗尽了一生的时间,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolphinenumber;

其二是英国的威廉·山克斯(WilliamShanks),他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。

在谷歌公司2005年的一次公开募股中,共集资四十多亿美元,A股发行数量是14,159,265股,这当然是由π小数点后的位数得来。(顺便一提,谷歌公司2004年的首次公开募股,集资额为$2,718,281,828,与数学常数e有关)

排版软件TeX从第三版之后的版本号为逐次增加一位小数,使之越来越接近π的值:3.1,3.14,……当前的最新版本号是3.1415926。

每年3月14日为圆周率日,“终极圆周率日”则是1592年3月14日6时54分,(因为其英式记法为“3/14/15926.54”,恰好是圆周率的十位近似值。)和3141年5月9日2时6分5秒(从前往后,3.14159265)

7月22日为圆周率近似日(英国式日期记作22/7,看成圆周率的近似分数)

有数学家认为应把"真正的圆周率"定义为2π,并将其记为τ(发音:tau)。

参考资料:百度百科--圆周率

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至举报,一经查实,本站将立刻删除。

最新文章