当前位置:首页 > SPSS线性回归分析结果解读指南

SPSS线性回归分析结果解读指南

@赵锦15686766613:spss线性回归分析结果怎么看-先看Anova表,主要看的是F和Sig值,再看模型汇总表:R表示拟合优度。一般sig小于零点零五被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于零,表明自变量可以有效预测因变量的变异,即有百分之九十五的把握结论正确。R这个值是针对自变量的增多会不断增强预测力的一个矫正,一般认为R方大于零点四表示模型是比较合理的,当然值越接近1表示模型越好,表中的结果就是表示模型比较合理。回归分析是科学研究领域最常用的统计方法,运用十分广泛,是探察变量之间的数量关系,并通过数学表达式来描述这种关系,进而确定一个变量或者几个变量对另一个变量的影响程度,要之其运用。

@王亦瑶13512539450:spss线性回归分析结果解读是什么?-spss线性回归分析结果解读是首先看方差分析表对应的sig是否小于0.05,如果小于0.05,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于0.05,就说明回归模型不显著,下面的就不用再看了。看具体回归系数表中每个自变量对应的sig值,如果sig小于0.05,说明该自变量对因变量有显著预测作用,反之没有作用。
SPSS线性回归分析结果解读指南
软件功能:它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。

@韩聪13193325912:spss回归分析结果解读-
SPSS线性回归分析结果解读指南
非标准化系数(B):非标准化回归系数。回归模型方程中使用的是非标准化系数。标准化系数(Beta):标准化回归系数。一般可用于比较自变量对Y的影响程度。Beta值越大说明该变量对Y的影响越大t值:t检验的过程值,回归分析中涉及两种检验(t检验和F检验),t检验分别检验每一个X对Y的影响关系,通过t检验说明这个X对Y有显著的影响关系;F检验用于检验模型整体的影响关系,通过F检验,则说明模型中至少有一个X对Y有显著的影响关系。此处的t值,为t检验的过程值,用于计算P值。一般无需关注。p值:t检验所得p值。P值小于0.05即说明,其所对应的X对因变量存在显著性影响关系。VIF值:共线性指标。大于5说明存在共线性问题。R2:决定系数,模型拟合指标。反应Y的波动有多少比例能被X的波动描述。调整R2:调整后的决定系数,也是模型拟合指标。当x个数较多是调整R2比R2更为准确。F检验:通过F检验,说明模型中至少有一个X对Y有显著的影响关系。分析时主要关注后面的P值即可。D-W值:D-W检验值,Durbin-Watson检验,是自相关性的一项检验方法。如果D-W值在2附近(1.7~2.3之间),则说明没有自相关性,模型构建良好。
SPSS线性回归分析结果解读指南
第一步:首先对模型整体情况进行分析包括模型拟合情况(R2),是否通过F检验等。第二步:分析X的显著性分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。第三步:判断X对Y的影响关系方向及影响程度结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。第四步:写出模型公式第五步:对分析进行总结SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果。

@张花长18865615126:SPSS回归分析结果该怎么解释,越详细越好-对模型整体情况进行分析:包括模型拟合情况(R2),是否通过F检验等。回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告。分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
SPSS线性回归分析结果解读指南
回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验;(3)判断自变量X对因变量Y有无影响;(4)利用所求得的回归方程进行预测和控制。以上内容参考:百度百科-回归分析

@魏惠13153897751:spss回归分析结果解读-第一步:首先对模型整体情况进行分析包括模型拟合情况(R2),是否通过F检验等。第二步:分析X的显著性分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。第三步:判断X对Y的影响关系方向及影响程度结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。第四步:写出模型公式第五步:对分析进行总结SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果。
SPSS线性回归分析结果解读指南

SPSS线性回归分析结果解读指南

@陈凡15305825784:spss做回归分析结果怎么看(spss进行回归分析结果怎么看)-您好,现在我来为大家解答以上的问题。spss做回归分析结果怎么看,spss进行回归分析结果怎么看相信很多小伙伴还不知道,现在让我们一起来看...
SPSS线性回归分析结果解读指南
您好,现在我来为大家解答以上的问题。spss做回归分析结果怎么看,spss进行回归分析结果怎么看相信很多小伙伴还不知道,现在让我们一起来看看吧!1、首先看方差分析表对应的sig是否小于0.05,如果小于0.05,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于0.05,就说明回归模型不显著,下面的就不用再看了。2、其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏,越接近1,说明拟合效果越好。3、这个在一般做论文中,不需要管它的高低,因为论文重在研究方法和思路的严谨性,导师不会追究你的结果是对是错,你的数据本身就不一定有质量,所以无所谓,不必在意。4、第三看具体回归系数表中每个自变量对应的sig值,如果sig小于0.05,说明该自变量对因变量有显著预测作用,反之没有作用。

@方佳18757067452:spss逐步回归分析结果解读-1、打开spss以后,打开数据,这些都准备好了以后,我们开始拟合方程,在菜单栏上执行:analyze---regression---linear,打开回归拟合对话框。2、我们将因变量放大dependent栏,将自变量都放到independent栏扩展资料3、将method设置为stepwise,这就是逐步回归法SPSS进行逐步回归分析:在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的'多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。

@蒋凡15934194696:SPSS多元线性回归输出结果的详细解释-SPSS多元线性回归输出结果的详细解释先说一句题外话,如果当年在大学里数理统计等课程结合SPSS,SAS,R等软件来讲,应该效果会好很多。最近做了一些用SPSS进行线性回归的实验,还是感觉很多细节把握不好,这里结合我的实验结果,以及网上别人的介绍总结一下,先贴几张SPSS的输出:下面简单解释一下这三张图中的结果:第一个表模型汇总表中,R表示拟合优度(goodnessoffit),它是用来衡量估计的模型对观测值的拟合程度。它的值越接近1说明模型越好。调整的R平方比调整前R平方更准确一些,图中的最终调整R方为0.550,表示自变量一共可以解释因变量55%的变化(variance),另外,由于使用的是StepWiseLinearRegression(SWLR),分析——回归——线性——“方法”选择“逐步”,所以模型1、2、3的R方逐渐增大,标准误差逐渐减小。(据网友的介绍:一般认为,拟合优度达到0.1为小效应(R方0.01),0.3为中等R方0.09),0.5为大(R方0.25),这是针对自然科学的一般界限。)第二个表Anova表示方差分析结果,主要看F和sig值两个,F值为方差分析的结果,是一个对整个回归方程的总体检验,指的是整个回归方程有没有使用价值(与随机瞎猜相比),其F值对应的Sig值小于0.05就可以认为回归方程是有用的。另外,从F值的角度来讲:F的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k,n-k-1),则拒绝原假设,即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。这里简单对Fa(k,n-k-1)进行一下解释,k为自变量个数,n为样本容量,n-k-1为自由度。对于我的实验中的情况来讲,k=3,样本容量为146,所以查表的时候应该差Fa(3,142),一般数理统计课本中都有F分布表,a表示的显著性水平(一般取0.05),但我们手头不一定会有课本,就需要借助于excel来查F表,打开excel,在公式区输入:=FINV(0.05,3,142),在单元格中即出现2.668336761,表中的F值显著大于这个值,则认为各个解释变量对因变量有显著影响。需要注意的是,方差分析是对多个自变量的总体检验,而不是单个自变量(单个自变量在系数表中,为单样本T检验),这就是第三个表回归系数表中的内容。系数表格列出了自变量的显著性检验结果(使用单样本T检验),最后一列为T检验的sig,表中均小于0.05,说明自变量对因变量具有显著影响,B表示各个自变量在回归方程中的系数,负值表示IPGF这个自变量对因变量有显著的负向影响,但是由于每个自变量的量纲和取值范围不同,基于B并不能反映各个自变量对因变量影响程度的大小,这时候我们就要借助标准系数。目前表格中的“试用版”实际上是Beta的意思,此时数值越大表示对自变量的影响更大。从这个分析过程来看,这个实验结果还挺理想的。

@曹嘉15016280279:SPSS中回归分析结果解释,不懂怎么看-相关分析:研究有没有关系,关系强度如何。回归分析:研究影响关系如何,有没有影响关系,影响关系如何。相关分析是研究有没有关系,回归分析是研究影响关系。明显地,相关分析是基础,然后再进行回归分析。首先需要知道有没有相关关系;有了相关关系,才可能有回归影响关系;如果没有相关关系,是不应该有回归影响关系的。因而从分析角度,应该先进行相关分析,完成相关分析后,确认有了相关分析,再进行回归分析。有时候会出现奇怪的现象,比如:有回归影响关系,但是却没有相关关系【此时建议以‘没有相关关系作为结论’】负向影响关系,但却是正向相关关系【此时建议以‘有相关关系但没有回归影响关系作为结论’】

@戚秀15859113354:SPSS做的逐步回归分析,怎样解释结果?-1、用每个自变量的标准化B/所有自变量标准化B之和,得出的百分比即可表示该自变量对因变量的贡献占比,2、逐步回归的基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含先主动变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。
SPSS线性回归分析结果解读指南
扩展资料:SPSS进行逐步回归分析:在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至举报,一经查实,本站将立刻删除。

最新文章